

 Navigation

 	
 next

 	Carmen 0.0.3 documentation

Carmen documentation

Carmen is a library for geolocating tweets.
Given a tweet, Carmen will return Location objects
that represent a physical location.
Carmen uses both coordinates and other information in a tweet to make
geolocation decisions.
It’s not perfect, but this greatly increases the number of geolocated
tweets over what Twitter provides.

	Quick start
	Using the frontend

	Using the Python API

	Built-in resolvers

	Extending Carmen

 Copyright 2013, Roger Que and Mark Dredze.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	Carmen 0.0.3 documentation

Quick start

The easiest way to install Carmen is with the built-in setup script:

$ python setup.py install

This installs the carmen package and associated data files
into the active Python environment.

Using the frontend

Carmen comes with a simple frontend to demonstrate its capabilities.
Once Carmen is installed, you can run the frontend with:

$ python -m carmen.cli [options] [input_file] [output_file]

The input file should contain one JSON-serialized tweet per line,
as returned by the Twitter API.
If it is not specified, standard input is assumed.
Carmen will output these tweets as JSON,
with location information added in the location key,
to the given output file, or standard output if none is specified.
Both the input and output filenames may end in .gz
to specify that Carmen should treat the files as gzipped text.

If the -s (--statistics) option is passed,
Carmen will print summary statistics when it finishes processing,
detailing the number of tweets that were successfully resolved,
and the resolution methods that were used to do so.
For information on other options, use the -h (--help) option.

Using the Python API

Python applications can use the Carmen API
to directly retrieve location information for tweets:

import json
import carmen

tweet = json.loads(tweet_json)
resolver = carmen.get_resolver()
resolver.load_locations()
location = resolver.resolve_tweet(tweet)

The resolver’s resolve_tweet() method is the central API call:

	
AbstractResolver.resolve_tweet(tweet)

	Find the best known location for the given tweet, which is
provided as a deserialized JSON object, and return a tuple
containing two elements: a boolean indicating whether the
resolution is provisional, and a Location object.
Provisional resolutions may be overridden by non-provisional
resolutions returned by a less preferred resolver (i.e., one
that comes later in the resolver order), and should be used when
returning locations with low confidence, such as those found by
using larger “backed-off” administrative units.

If no suitable locations are found, None may be returned.

	
class carmen.Location

	Contains information about a location and how it was identified.

	
latitude

	
longitude

	The coordinates of this location’s geographic center.

	
country

	
state

	
county

	
city

	Basic location information. A value of None for a particular
field indicates that it does not apply for that specific location.

	
aliases

	An iterable containing alternative names for this location.

	
resolution_method

	The name of the method used to resolve this location’s data from
the tweet that originally contained it.

	
known

	True if this location appears in the database, False otherwise.

	
id

	For known locations, the database ID. For other locations, a
unique ID is arbitrarily assigned for each run.

	
twitter_url

	
twitter_id

	For locations with information based solely on Twitter Place
information, the URL and ID of the associated Place.

The resolver’s default location database can be added to or overridden
using its add_location() and load_locations() methods:

	
AbstractResolver.add_location(location)

	Add an individual Location object to this
resolver’s set of known locations.

	
AbstractResolver.load_locations(location_file=None)

	Load locations into this resolver from the given
location_file, which should contain one JSON object per line
representing a location. If location_file is not specified,
an internal location database is used.

Finally, the behavior of the resolver itself can be customized:

	
carmen.get_resolver(order=None, options=None, modules=None)

	Return a location resolver. The order argument, if given,
should be a list of resolver names; results from resolvers named
earlier in the list are preferred over later ones. For a list of
built-in resolver names, see Built-in resolvers. The options
argument can be used to pass configuration options to individual
resolvers, in the form of a dictionary mapping resolver names to
keyword arguments:

{'geocode': {'max_distance': 50}}

The modules argument can be used to specify a list of additional
modules to look for resolvers in. See Extending Carmen for details.

 Copyright 2013, Roger Que and Mark Dredze.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	Carmen 0.0.3 documentation

Built-in resolvers

By default, Carmen attempts to resolve tweet locations by three methods,
in the following order:

	Using the place resolver, which matches Twitter Places to known
locations by name.
This resolver takes two options:
	allow_unknown_locations determines whether unknown Places are
converted to locations that may be returned from resolution.
By default, this option is False.

	resolve_to_known_ancestor determines whether tweets with
unknown Places are resolved to the nearest known ancestor
location containing that Place.
For example, an unknown city may be resolved to a known state-
or provincial-level location.
Such a backed-off location, unlike others returned from this
resolver, may be superseded by more confident estimates from
other resolvers.
This option is only effective if allow_unknown_locations is
False, and itself defaults to False.

	Using the geocode resolver, which finds the known location
nearest the tweet’s geographic coordinates.
This resolver takes a single option, max_distance,
which specifies the maximum distance away from the coordinates,
in miles, that the resolver will look for matching locations.

	Using the profile resolver, which matches the “location” fields
of tweet authors’ user profiles to known locations by name.
This resolver takes no options.

The resolution_method attribute of each Location
object, and the corresponding resolution_method key in the resulting
JSON output, contain a string specifying the name of the resolver used
to determine a tweet’s location.

 Copyright 2013, Roger Que and Mark Dredze.
 Created using Sphinx 1.1.3.

 Navigation

 	
 previous

 	Carmen 0.0.3 documentation

Extending Carmen

Carmen can be extended with user-written resolvers.
These resolvers should be subclasses of
carmen.resolver.AbstractResolver
that provide implementations of
the add_location() and resolve_tweet() methods.
Resolvers may create lookup tables or other caches when locations are
added, depending on how they resolve individual tweets.

Using custom resolvers with the get_resolver() API
is a two-step process.
First, the resolver should be decorated with the
carmen.resolver.register()
function, in order to enable automatic loading.
The decorator takes one argument,
a name that is used to refer to the resolver
for inclusion, exclusion, option specification,
and in resolution_method attributes:

from carmen.resolver import AbstractResolver, register

@register('foo')
class FooResolver(AbstractResolver):
 ...

Next, when calling get_resolver(),
specify modules containing additional custom resolvers
in the modules keyword argument:

from carmen import get_resolver
import mypackage.resolvers

resolver = get_resolver(modules=[mypackage.resolvers])

Any options specified in the options argument
to get_resolver() are passed as keyword arguments
when the resolver is instantiated.
For example, a resolver named custom may have the following
signature for its __init__ method:

def __init__(self, allow_foo=True, allow_bar=False):
 ...

These defaults may be overridden
with an options dictionary containing:

{'custom': {'allow_foo': False, 'allow_bar': True}}

Locations may then be added, and tweets resolved, as with Carmen’s
built-in resolvers.

 Copyright 2013, Roger Que and Mark Dredze.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		Carmen 0.0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Roger Que and Mark Dredze.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

